登录

注册

EN

Graph dimensions and chimera-like states in neural networks and power systems

发布日期:2024-06-21 作者: 编辑:梁倩霞 来源:

主讲人:邓盛锋 副研究员陕西师范大学

题目:Graph dimensions and chimera-like states in neural networks and power systems

时间:2024062815:00

地点:理工楼1215

邀请人俞连春

报告摘要:

While topological dimensions have been widely applied to quantify the dimensionality of complex networks, some network properties may be better captured by the spectral dimension $d_s$. Especially, partial, frustrated synchronization and chimera-like states are expected to occur in Kuramoto-like models if the spectral dimension of the underlying graph is low: $d_s < 4$. We provide numerical evidence that this happens in the case of the high-voltage power grid of Europe ($d_s < 2$), a large human connectome (KKI113) and in the case of the largest, exactly known brain network corresponding to the fruit-fly (FF) connectome ($d_s < 4$), even though their graph dimensions are much higher. We provide local synchronization results of the first- and second-order (Shinomoto) Kuramoto models by numerical solutions on the FF and the European power-grid graphs, respectively, and show the emergence of chimera-like patterns on the graph community level as well as by the local order parameters.

个人简介:

邓盛锋,陕西师范大学物理学与信息技术学院副研究员。2015-2020年师从华中师范大学粒子物理研究所李炜教授攻读博士学位,期间于2018-2020年到美国弗吉尼亚理工大学进行博士联合培养,师从非平衡临界现象领域的理论物理学家Uwe C. Täuber教授。 2021-2023年到匈牙利国家科学院能源研究中心复杂系统部与Géza Ódor教授合作从事博士后研究。主要从事反应-扩散系统的非平衡临界现象,复杂网络上的传播动力学和同步动力学等领域的研究。研究工作发表于PRX EnergyPhysical Review EChaos 等学术期刊。


手机版

官方微信

访问信息

地区活动

联系我们